8,001 research outputs found

    The N-terminal domain of Lhcb proteins is critical for recognition of the LHCII kinase

    Get PDF
    AbstractThe light-harvesting chlorophyll (Chl) a/b complex of photosystem (PS) II (LHCII) plays important roles in the distribution of the excitation energy between the two PSs in the thylakoid membrane during state transitions. In this process, LHCII, homo- or heterotrimers composed of Lhcb1–3, migrate between PSII and PSI depending on the phosphorylation status of Lhcb1 and Lhcb2. We have studied the mechanisms of the substrate recognition of a thylakoid threonine kinase using reconstituted site-directed trimeric Lhcb protein–pigment complex mutants. Mutants lacking the positively charged residues R/K upstream of phosphorylation site (Thr) in the N-terminal domain of Lhcb1 were no longer phosphorylated. Besides, the length of the peptide upstream of the phosphorylated site (Thr) is also crucial for Lhcb phosphorylation in vitro. Furthermore, the two N-terminal residues of Lhcb appear to play a key role in the phosphorylation kinetics because Lhcb with N-terminal RR was phosphorylated much faster than with RK. Therefore, we conclude that the substrate recognition of the LHCII kinase is determined to a large extent by the N-terminal sequence of the Lhcb proteins. The study provides new insights into the interactions of the Lhcb proteins with the LHCII kinase

    Design of Single-Molecule Multiferroics for Efficient Ultrahigh-Density Nonvolatile Memories

    Get PDF
    It is known that an isolated single-molecule magnet tends to become super- paramagnetic even at an ultralow temperature of a few Kelvin due to the low spin switching barrier. Herein, single-molecule ferroelectrics/multiferroics is proposed, as the ultimate size limit of memory, such that every molecule can store 1 bit data. The primary strategy is to identify polar molecules that possess bistable states, moderate switching barriers, and polarizations fixed along the vertical direction for high-density perpendicular recording. First- principles computation shows that several selected magnetic metal porphyrin molecules possess buckled structures with switchable vertical polarizations that are robust at ambient conditions. When intercalated within a bilayer of 2D materials such as bilayer MoS2 or CrI3, the magnetization can alter the spin distribution or can be even switched by 180° upon ferroelectric switching, rendering efficient electric writing and magnetic reading. It is found that the upper limit of areal storage density can be enhanced by four orders of magnitude, from the previous super-paramagnetic limit of ≈40 to ≈106 GB in.−2, on the basis of the design of cross-point multiferroic tunneling junction array and multiferroic hard drive

    Implicit Temporal Modeling with Learnable Alignment for Video Recognition

    Full text link
    Contrastive language-image pretraining (CLIP) has demonstrated remarkable success in various image tasks. However, how to extend CLIP with effective temporal modeling is still an open and crucial problem. Existing factorized or joint spatial-temporal modeling trades off between the efficiency and performance. While modeling temporal information within straight through tube is widely adopted in literature, we find that simple frame alignment already provides enough essence without temporal attention. To this end, in this paper, we proposed a novel Implicit Learnable Alignment (ILA) method, which minimizes the temporal modeling effort while achieving incredibly high performance. Specifically, for a frame pair, an interactive point is predicted in each frame, serving as a mutual information rich region. By enhancing the features around the interactive point, two frames are implicitly aligned. The aligned features are then pooled into a single token, which is leveraged in the subsequent spatial self-attention. Our method allows eliminating the costly or insufficient temporal self-attention in video. Extensive experiments on benchmarks demonstrate the superiority and generality of our module. Particularly, the proposed ILA achieves a top-1 accuracy of 88.7% on Kinetics-400 with much fewer FLOPs compared with Swin-L and ViViT-H. Code is released at https://github.com/Francis-Rings/ILA .Comment: ICCV 2023 oral. 14 pages, 7 figures. Code released at https://github.com/Francis-Rings/IL
    • …
    corecore